classes – Sam & Max http://sametmax.com Du code, du cul Tue, 10 Sep 2019 09:14:50 +0000 en-US hourly 1 https://wordpress.org/?v=4.9.7 32490438 Le guide ultime et définitif sur la programmation orientée objet en Python à l’usage des débutants qui sont rassurés par les textes détaillés qui prennent le temps de tout expliquer. Partie 7. http://sametmax.com/le-guide-ultime-et-definitif-sur-la-programmation-orientee-objet-en-python-a-lusage-des-debutants-qui-sont-rassures-par-les-textes-detailles-qui-prennent-le-temps-de-tout-expliquer-partie-7/ http://sametmax.com/le-guide-ultime-et-definitif-sur-la-programmation-orientee-objet-en-python-a-lusage-des-debutants-qui-sont-rassures-par-les-textes-detailles-qui-prennent-le-temps-de-tout-expliquer-partie-7/#comments Sun, 28 Apr 2013 05:47:17 +0000 http://sametmax.com/?p=5912 path.py.]]> Un peu de rock à l’anglaise pour faire passer la pilule :

Après avoir lu la partie précédente, vous avez dû vous demander comment mettre tout ça en application.

Comme je vous l’avais expliqué, l’orienté objet est particulièrement adapté à la création de belles APIs. Nous allons donc étudier aujourd’hui un cas réel de mise en pratique réussi avec la lib path.py.

J’ai choisi cette lib car :

  • Le code tient dans un seul fichier.
  • Il y a plein de patterns utilisés dedans qui sont intéressants à expliquer.
  • C’est une source propre qui suit globalement les bonnes pratiques.
  • Path.py a une API élégante, donc le résultat à l’usage est un bon exemple.

Petit rappel, path.py est une surcouche au dessus des modules tempfile, os ou encore shutil, c’est à dire qu’elle permet de faire exactement la même chose, en plus pratique.

C’est donc typiquement un bibliothèque de confort, et elle n’aurait aucun intérêt si elle n’était pas agréable à utiliser puisque l’on peut déjà faire tout ce qu’elle fait avec Python en standard. Son attractivité réside dans la beauté de son interface qui rend la manipulation de fichiers très intuitive :

# elle permet de manipuler des chemins facilement
from path import path
dossier = path('/etc')
fichier = dossier / 'postgresql/9.1/main/pg_hba.conf'

# d'obtenir des informations sur le fichier
fichier.exists()
## True
fichier.parent
## path(u'/etc/postgresql/9.1/main')
fichier.basename()
## path(u'pg_hba.conf')
fichier.dirname()
## path(u'/etc/postgresql/9.1/main')
fichier.spli
fichier.split       fichier.splitall    fichier.splitdrive  fichier.splitext    fichier.splitlines  fichier.splitpath   fichier.splitunc
fichier.splitext()
## (path(u'/etc/postgresql/9.1/main/pg_hba'), u'.conf')


# lister les fichiers dans un dossier
for fichier in dossier.listdir():
...     print fichier
...
## /etc/thunderbird
## /etc/libpaper.d
## /etc/mtools.conf
## ...

# lister récursivement les fichiers dans un dossier
for fichier in (dossier / 'apt/').walkfiles():
    print fichier
...
## /etc/apt/sources.list.save
## /etc/apt/sources.list
## /etc/apt/trusted.gpg
## /etc/apt/trusted.gpg~
## /etc/apt/sources.list.d/indicator-brightness-ppa-raring.list.save
## /etc/apt/sources.list.d/tualatrix-ppa-raring.list
## /etc/apt/sources.list.d/webupd8team-sublime-text-2-raring.list
## /etc/apt/sources.list.d/fossfreedom-byzanz-raring.list.save
## /etc/apt/sources.list.d/hotot-team-ppa-raring.list.save
## /etc/apt/sources.list.d/webupd8team-y-ppa-manager-raring.list
## /etc/apt/sources.list.d/pitti-postgresql-raring.list.save
## /etc/apt/sources.list.d/pitti-postgresql-raring.list
## /etc/apt/sources.list.d/yorba-ppa-raring.list.save
## /etc/apt/sources.list.d/indicator-brightness-ppa-raring.list
## /etc/apt/sources.list.d/webupd8team-sublime-text-2-raring.list.save
## /etc/apt/sources.list.d/yorba-ppa-raring.list
## /etc/apt/sources.list.d/webupd8team-y-ppa-manager-raring.list.save
## /etc/apt/sources.list.d/fossfreedom-byzanz-raring.list
## /etc/apt/trustdb.gpg
## /etc/apt/apt.conf.d/20dbus
## /etc/apt/apt.conf.d/10periodic
## /etc/apt/apt.conf.d/99synaptic
## /etc/apt/apt.conf.d/70debconf
## /etc/apt/apt.conf.d/05aptitude
## /etc/apt/apt.conf.d/20archive
## /etc/apt/apt.conf.d/01autoremove
## /etc/apt/apt.conf.d/50unattended-upgrades
## /etc/apt/apt.conf.d/00aptitude
## /etc/apt/apt.conf.d/99update-notifier
## /etc/apt/apt.conf.d/15update-stamp
## /etc/apt/apt.conf.d/00trustcdrom
## /etc/apt/apt.conf.d/20changelog
## /etc/apt/apt.conf.d/01autoremove-kernels

# et bien d'autres choses

Nous allons donc commenter son code, dans le cadre du tuto (on ne va pas voir les algos en détail). Je mettrai mes commentaires entre #< sm > afin de les distinguer du reste.


#
# On commence par un bon gros bloc de copyright, sachant que path.py est
# sous MIT License. Le plus inhabituel c'est l'absence de déclaration
# d'encoding en en-tête, qui s'explique par le fait que toute la lib est
# écrite uniquement avec des caractères ASCII, ce qui est l'encodage par
# défaut de Python 2.7. Python 3 a UTF8 en encodage par défaut, mais ASCII
# est un sous-ensemble de UTF8, donc ça ne pose pas de problème.

# Notez qu'avec mes commentaires en plus, ça ferait planter le script puisque
# j'utilise des accents.
#

#
# Copyright (c) 2010 Mikhail Gusarov
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
#

#
# La docstring du module qui documente l'usage général du module. En
# l'occurence au moins l'existence de la classe principale et son usage. Les
# symboles comme '\x40' sont juste une autre représentation d'un caractère
# via sa valeur dans la table ASCII.

# Par exemple, '@' est à la case 64 dans la table ASCII, et 64 se note 40 en
# hexadécimal:

# >>> ord('@')
# 64
# >>> int('40', base=16)
# 64

# Du coup on peut écrire '@' juste avec un caractère d’échappement en Python
# qui va faire le lien. Cette technique est utile si on veut faire passer
# du texte avec des caractères spéciaux dans certains protocoles, par exemple
# quand on veut rentrer un email dans une URL. En l’occurrence je ne vois
# absolument pas ce que ça vient foutre ici.
#


""" path.py - An object representing a path to a file or directory.

Original author:
 Jason Orendorff 

Current maintainer:
 Jason R. Coombs 

Contributors:
 Mikhail Gusarov 
 Marc Abramowitz 
 Jason R. Coombs 
 Jason Chu 
 Vojislav Stojkovic 

Example::

    from path import path
    d = path('/home/guido/bin')
    for f in d.files('*.py'):
        f.chmod(0755)

path.py requires Python 2.5 or later.
"""


#
# Import du mot clé with, car cette lib est compatible avec Python 2.5
# et le keyword est apparu en 2.6. Il a été backporté dans __future__
#
from __future__ import with_statement

import sys #Informations sur le système
import warnings #Alertes techniques à d'autres dev
import os #Manipulation du File System
import fnmatch #Pattern matching comme dans un shell
import glob #Lister des fichier avec la syntax shell
import shutil #Manipulation de fichiers de haut niveau
import codecs #Encoding
import hashlib #Sommes de contrôle
import errno #Les codes d'erreurs liées aux fichiers.
import tempfile #Création de fichiers temporaires
import functools #Manipulation des fonctions

#
# Tentative d'utilisation de la lib win32security qui sert à gérer
# des aspects sécuritaires du FS sous Windows. C'est une lib tierce partie,
# et une dépendance optionelle, donc l'import est géré pour ne pas faire
# d'erreur si la lib n'est pas disponible.

# Idem pour pwd qui est dans la lib standard mais uniquement sur les distribs
# unix et qui donne accès aux infos sur l'utilisateur du système, tester
# son mot de passe, etc.
#
try:
    import win32security
except ImportError:
    pass

try:
    import pwd
except ImportError:
    pass



#
# Manière standard de lister la version de la lib dans un module Python.

# __all__ est une variable magique qui peut contenir une liste des noms de
# tout ce qui est importable dans le module, de telle sorte que si
# quelqu'un fait : from path import *, seul le contenu de __all__ soit
# importé.
#
__version__ = '3.0'
__all__ = ['path']


#
# Les warnings ressemblent beaucoup aux exceptions excepté qu'ils ne font
# pas planter le programme. Ici donc, ou hérite de la base des warnings
# comme on le ferait pour créer son Exception personnalisée, ce qui va
# permettre à l'utilisateur de la lib path.py de, plus tard, pouvoir filter
# ce warning en particulier.
#


class TreeWalkWarning(Warning):
    pass


#
# Un décorateur de mémorisation, c'est à dire qui va mettre en cache les
# résultats de la fonction sur lequel il est appliqué afin que les prochains
# appels avec les mêmes paramètres lisent les valeurs du cache en mémoire
# plutôt que de refaire l'opération.

# Il est utilisé plus bas sur :

#     @classmethod
#     @simple_cache
#     def using_module(cls, module):
#         subclass_name = cls.__name__ + '_' + module.__name__
#         bases = (cls,)
#         ns = {'module': module}
#         return type(subclass_name, bases, ns)

# Ça évitera plusieurs traitements de using_module() si le paramètre de
# 'module' ne change pas.

# Et oui, on peut mélanger plusieurs classes et fonctions dans un même module,
# ça n'a pas d'importance.

#
def simple_cache(func):
    """
    Save results for the 'using_module' classmethod.
    When Python 3.2 is available, use functools.lru_cache instead.
    """
    saved_results = {}
    def wrapper(cls, module):
        if module in saved_results:
            return saved_results[module]
        saved_results[module] = func(cls, module)
        return saved_results[module]
    return wrapper


#
# Nous avons vu que les propriétés permettaient de déguiser une méthode
# en attribut. Cela ne marche pas sur une méthode de classe car dans ce cas
# la propriété va se retourner elle-même.
# Cette classe hérite de property pour écraser ce comportement et bien
# retourner la valeur de la méthode de classe.

# Elle est utilisée plus loin dans:

#     @ClassProperty
#     @classmethod
#     def _next_class(cls):
#         """
#         What class should be used to construct new instances from this class
#         """
#         return cls

# Ce qui va permettre de faire path._next_class au lieu de path._next_class().

# C'est cosmétique, mais c'est le but de la lib d'être jolie.
#
class ClassProperty(property):
    def __get__(self, cls, owner):
        return self.fget.__get__(None, owner)()

#
# Encore un décorateur, cette fois sous forme de classe (on ne les a pas vu)
# Celui-ci, quand il est appliqué, sert à ce qu'une méthode soit à la fois
# une méthode d'instance et une méthode de classe, le choix se faisant
# dynamiquement selon la situation.

# Par exemple dans:

#     @multimethod
#     def joinpath(cls, first, *others):
#         """
#         Join first to zero or more path components, adding a separator
#         character (first.module.sep) if needed.  Returns a new instance of
#         first._next_class.
#         """
#         if not isinstance(first, cls):
#             first = cls(first)
#         return first._next_class(first.module.join(first, *others))

# 'cls' sera une instance ou une classe selon que l'appel se fasse depuis la
# classe ou l'instance.

# Notez le nom de la classe qui n'est pas en CamelCase (pas de majuscule)
# alors qu'il s'agit bien d'un classe. Comme c'est un décorateur, on a
# l'habitude de les voir en minuscule, donc on laisse ce nom en minuscule.
# C'est une des rares exceptions au PEP8 (on en verra d'autres plus bas)
# qu'on peut se permettre quand on sait ce qu'on fait :-)
#
class multimethod(object):
    """
    Acts like a classmethod when invoked from the class and like an
    instancemethod when invoked from the instance.
    """
    def __init__(self, func):
        self.func = func

    def __get__(self, instance, owner):
        return (
            functools.partial(self.func, owner) if instance is None
            else functools.partial(self.func, owner, instance)
        )


#
# La classe principale, et le plus gros morceau de code. Une classe peut
# tout à fait faire plusieurs centaines de lignes.

# En général je recommande de ne pas avoir de fichiers qui fait plus de 500
# lignes en Python, mais ici le but est clairement de faire une lib qui tient
# dans un fichier pour l'auteur.

# La classe hérite du type unicode (hé oui, on peut hériter des types
# built-in !); ainsi le path peut être manipulé comme une chaîne et reste
# compatible avec tous les outils existants de manipulation de nom de fichiers
# car ils utilisent les chaînes.

# L'héritage est une techno qui sert donc aussi à conserver des compatibilités
# et des comportements existants / attendus.

# Encore une fois le nom est en minuscule alors que c'est une classe, c'est une
# autre exception : quand on crée un type de base, on le met en minuscule
# car c'est ce que fait la lib standard (int(), str(), list(), datetime(),
# unicode(), etc, sont en fait des classes).

# La docstring pourrait être meilleure.
#
class path(unicode):
    """ Represents a filesystem path.

    For documentation on individual methods, consult their
    counterparts in os.path.
    """

    #
    # Probablement mon désaccord principal avec cette lib, l'init vérifie
    # qu'on lui passe bien une chaîne alors que j'aurais choisi le duck typing.
    #

    def __init__(self, other):
        if not isinstance(other, basestring):
            raise TypeError("path must be a string")

    #
    # L'auteur stocke la référence de os.path ici, et l'utilise partout à la
    # place d'utiliser os.path directement. Cela permet de changer ce module à
    # la volée, par exemple pour utiliser spécifiquement le module dédié à
    # Windows ou à unix au lieu de celui choisit automatiquement.

    # C'est un exemple de pattern stratégie.

    # Et non, la docstring n'a aucun effet. Ça pourrait être un comment.
    # En revanche, comme spécifié en comment, certains outils comme sphinx
    # prennent les docstring en compte sur les variables.

    #

    module = os.path
    "The path module to use for path operations."


    #
    # Une méthode retourne une classe path dont le module est
    # celui passé en paramètre. Pratique si vous voulez
    # utiliser un module spécifique à un OS depuis un autre
    # mais juste ponctuellement.
    # Par exemple sous Windows, vous voulez traiter un chemin
    # (mais un seul, le reste est sous Windows) Unix, vous
    # pouvez faire :
    #
    # >>> import posixpath
    # >>> p = path.using_module(posixpath)('/etc')
    # >>> print p
    # /etc
    # >>> p
    # path_posixpath(u'/etc')

    # ce qui crée un objet path() dont l'attribut 'module' est le module
    #  posixpath. C'est une application concrète de l'injection de dépendance.

    #
    @classmethod
    @simple_cache
    def using_module(cls, module):
        subclass_name = cls.__name__ + '_' + module.__name__
        bases = (cls,)
        ns = {'module': module}
        return type(subclass_name, bases, ns)


    #
    # Une propriété qui retourne la classe (oui, on peut retourner une CLASSE)
    # à utiliser si on veut créer une nouvelle instance de cette classe.

    # C'est très abstrait, vous n'aurez pas à faire ça tous les jours.

    # C'est une méthode placée là pour permettre un maximum de configurabilité
    # : si vous changez cette classe, certaines méthodes renverront un autre
    # type plutôt que le type en cours. Utile pour certains cas où vous voulez
    # hériter de path() mais désirez un comportement spécial pour la création
    # de nouveaux path.
    #
    @ClassProperty
    @classmethod
    def _next_class(cls):
        """
        What class should be used to construct new instances from this class
        """
        return cls

    # --- Special Python methods.

    #
    # Là on attaque la définition de toutes les méthodes magiques.
    # Essentiellement pour overrider le comportement par défaut des chaînes
    # unicode et exposer une API sympa.
    #


    #
    # Dans le shell, un path s'affichera path('chemin') et non 'chemin'
    # L'auteur affiche en fait le nom du type en cours (en cas d'héritage
    # cela changera) et ensuite la représentation du parent, en l'occurence
    # la classe unicode().
    #
    def __repr__(self):
        return '%s(%s)' % (type(self).__name__, super(path, self).__repr__())


    #
    # Override l'addition.
    # path('truc') + 'machin' donne path('trucmachin')
    #
    # Adding a path and a string yields a path.
    def __add__(self, more):
        try:
            return self._next_class(super(path, self).__add__(more))
        except TypeError:  # Python bug
            return NotImplemented

    #
    # 'machin' + path('truc') donne path('trucmachin')
    #
    def __radd__(self, other):
        if not isinstance(other, basestring):
            return NotImplemented
        return self._next_class(other.__add__(self))

    #
    # Override la division.
    # path('truc') / 'machin' donne path('truc/machin')
    #
    # The / operator joins paths.
    def __div__(self, rel):
        """ fp.__div__(rel) == fp / rel == fp.joinpath(rel)

        Join two path components, adding a separator character if
        needed.
        """
        return self._next_class(self.module.join(self, rel))

    #
    # Petite astuce de compatibilité si le mec a fait
    # from __future__ import division ou si on est en Python 3
    #
    # Remarque : on peut définir des attributs de classe n'importe où, et pas
    # seulement en haut de la classe.
    #

    # Make the / operator work even when true division is enabled.
    __truediv__ = __div__

    #
    # path() est aussi un context manager qu'on peut utiliser avec with !

    # with path('truc'):
    #     tout ce qui est ici se fait dans le dossier truc

    # *_ n'est pas une notation qui a un effet spécial. '_' est un nom de
    # variable valide, c'est une convention pour dire 'je ne vais pas me
    # servir de cet argument, je le déclare juste pour respecter la signature'
    # et '*' est l'opérateur de paramétrage dynamique. '*_' est donc l'auteur
    # signalant qu'il accepte n'importe quels paramètres positionnels, mais
    # qu'ils ne les utilisera pas.
    #
    def __enter__(self):
        self._old_dir = self.getcwd()
        os.chdir(self)

    def __exit__(self, *_):
        os.chdir(self._old_dir)


    #
    # Le résultat de os.getcwdu(), mais retourne un objet path().
    # Une bonne part du travail de la lib consiste à wrapper les méthodes
    # ordinaires des autres modules pour qu'elles retournent un type path()
    # pour qu'après on puisse faire des '.parent' ou utiliser '/' dessus
    # sans y penser.
    #

    @classmethod
    def getcwd(cls):
        """ Return the current working directory as a path object. """
        return cls(os.getcwdu())

    #
    # --- Operations on path strings.

    #
    # On enchaine ici des wrappers sur des méthodes de os.path (ou son
    # remplaçant dans self.module), que l'objet s'applique à lui-même (self).
    # Comme la classe hérite de 'unicode', toutes ces méthodes marchent.
    # Et comme self._next_class retourne la classe pour créer le prochain
    # path, on retourne toujours un objet de type 'path'.

    # Si on fait fi des abstractions et qu'on lit les valeurs par défaut,

    #     self._next_class(self.module.abspath(self))

    # fait en fait:

    #     path(os.path.abspath('ton_chemin'))

    # Ce qui donne l'API suivante quand on utilise la lib :

    #     >>> path('/etc/nginx/..').abspath()
    #     path(u'/etc')
    #

    def abspath(self):
        return self._next_class(self.module.abspath(self))

    def normcase(self):
        return self._next_class(self.module.normcase(self))

    def normpath(self):
        return self._next_class(self.module.normpath(self))

    def realpath(self):
        return self._next_class(self.module.realpath(self))

    def expanduser(self):
        return self._next_class(self.module.expanduser(self))

    def expandvars(self):
        return self._next_class(self.module.expandvars(self))

    def dirname(self):
        return self._next_class(self.module.dirname(self))

    def basename(self):
        return self._next_class(self.module.basename(self))


    #
    # Là on rentre dans les méthodes utilitaires. L'auteur a constaté qu'on
    # appelait très souvent ces trois méthodes sur les chemin des fichiers de
    # config genre '~/toto' pour obtenir '/home/sam/toto' et propose donc
    # un shortcut pour le faire car honnêtement, qui se souvient du nom
    # de ces 3 méthodes à enchaîner pour obtenir un truc bullet proof ?
    # Règle d'or d'une belle API : si il faut regarder dans la doc à chaque
    # fois qu'on utilise quelque chose, il faut écrire un meilleur code.
    #

    def expand(self):
        """ Clean up a filename by calling expandvars(),
        expanduser(), and normpath() on it.

        This is commonly everything needed to clean up a filename
        read from a configuration file, for example.
        """
        return self.expandvars().expanduser().normpath()


    #
    # Les méthodes suivantes sont préfixées d'un '_', donc elle n'apparaîtront
    # pas dans les résultats d'outils avec complétion du code. Cela nous
    # indique qu'il s'agit d'un détail d'implémentation, et que l'on ne devrait
    # pas l'utiliser en dehors de la classe. Rien n'empêche de le faire
    # cependant si vous avez envie de faire un beau hack bien gras.

    # Ici l'auteur fait ce choix car il va enrober ces appels dans des
    # propriétés pour les déguiser en attributs.

    # Ces 3 méthodes retournent respectivement l'extension de fichier, le nom
    # de fichier sans extension, et la lettre de lecteur sur les chemins
    # windows.
    #

    def _get_namebase(self):
        base, ext = self.module.splitext(self.name)
        return base

    def _get_ext(self):
        f, ext = self.module.splitext(self)
        return ext

    def _get_drive(self):
        drive, r = self.module.splitdrive(self)
        return self._next_class(drive)


    #

    # Malgré l'indentation bizarre, il s'agit bien de :

    #     attribut_de_classe = function(arg1, arg2, arg3, arg4)


    # Dans les tutos précédents vous avez vu comment créer une propriété avec
    # le décorateur @property.

    # Ici l'auteur utilise l'ancienne façon de faire, car il veut garder la
    # compatibilité avec python 2.5.

    # C'est globalement la même chose, par exemple ici l'attribut 'namebase'
    # est défini comme une property et y accéder en lecture va appeler la
    # méthode '_get_namebase'. Le second et le troisième argument de
    # property() sont les setter et les deleter qui ne sont pas ici définis et
    # mis à None (donc l'attribut est en lecture seule). Le dernier argument
    # est la docstring.

    #

    parent = property(
        dirname, None, None,
        """ This path's parent directory, as a new path object.

        For example, path('/usr/local/lib/libpython.so').parent == path('/usr/local/lib')
        """)

    name = property(
        basename, None, None,
        """ The name of this file or directory without the full path.

        For example, path('/usr/local/lib/libpython.so').name == 'libpython.so'
        """)

    namebase = property(
        _get_namebase, None, None,
        """ The same as path.name, but with one file extension stripped off.

        For example, path('/home/guido/python.tar.gz').name     == 'python.tar.gz',
        but          path('/home/guido/python.tar.gz').namebase == 'python.tar'
        """)

    ext = property(
        _get_ext, None, None,
        """ The file extension, for example '.py'. """)

    drive = property(
        _get_drive, None, None,
        """ The drive specifier, for example 'C:'.
        This is always empty on systems that don't use drive specifiers.
        """)

    #
    # Encore des wrappers pour retourner des objets path(). La structure
    # est classique: définition de méthodes courtes avec docstring.

    # L'auteur retourne un tuple comme les méthodes originales (autant
    # changer le comportement attendu le moins possible), mais cast la
    # première partie du tuple en objet path().
    #

    def splitpath(self):
        """ p.splitpath() -> Return (p.parent, p.name). """
        parent, child = self.module.split(self)
        return self._next_class(parent), child

    def splitdrive(self):
        """ p.splitdrive() -> Return (p.drive, ).

        Split the drive specifier from this path.  If there is
        no drive specifier, p.drive is empty, so the return value
        is simply (path(''), p).  This is always the case on Unix.
        """
        drive, rel = self.module.splitdrive(self)
        return self._next_class(drive), rel

    def splitext(self):
        """ p.splitext() -> Return (p.stripext(), p.ext).

        Split the filename extension from this path and return
        the two parts.  Either part may be empty.

        The extension is everything from '.' to the end of the
        last path segment.  This has the property that if
        (a, b) == p.splitext(), then a + b == p.
        """
        filename, ext = self.module.splitext(self)
        return self._next_class(filename), ext

    #
    # Ici on a des méthodes légèrement différentes de celles qu'elles wrappent.
    # C'est vraiment pour se faciliter la tâche sur les opérations courantes
    # et sauver quelques caractères à la frappe.
    #

    def stripext(self):
        """ p.stripext() -> Remove one file extension from the path.

        For example, path('/home/guido/python.tar.gz').stripext()
        returns path('/home/guido/python.tar').
        """
        return self.splitext()[0]

    def splitunc(self):
        unc, rest = self.module.splitunc(self)
        return self._next_class(unc), rest

    @property
    def uncshare(self):
        """
        The UNC mount point for this path.
        This is empty for paths on local drives.
        """
        unc, r = self.module.splitunc(self)
        return self._next_class(unc)

    #
    # joinpath cast le premier argument si il n'est pas du même type que la
    # classe en cours. Il n'y a pas de raison apparente, donc je suppose que
    # c'est pour éviter une bug qu'ils ont découvert dans une situation
    # borderline
    #

    @multimethod
    def joinpath(cls, first, *others):
        """
        Join first to zero or more path components, adding a separator
        character (first.module.sep) if needed.  Returns a new instance of
        first._next_class.
        """
        if not isinstance(first, cls):
            first = cls(first)
        return first._next_class(first.module.join(first, *others))


    #
    # Puis on arrive enfin dans les méthodes métiers qui ne sont pas dans les
    # modules. Typiquement ce seront des méthodes plus longues et inconnues
    # car n'existant pas dans les autres modules donc :
    # - on les met à la fin
    # - la docstring est plus explicite.
    # Ici splitall permet de faire :

    # >>> path('/usr/lib/python2.7/fnmatch.pyc').splitall()
    # [path(u'/'), u'usr', u'lib', u'python2.7', u'fnmatch.pyc']

    # Ce que os.path ne permet pas de faire directement.

    #

    def splitall(self):
        r""" Return a list of the path components in this path.

        The first item in the list will be a path.  Its value will be
        either os.curdir, os.pardir, empty, or the root directory of
        this path (for example, ``'/'`` or ``'C:\\'``).  The other items in
        the list will be strings.

        ``path.path.joinpath(*result)`` will yield the original path.
        """
        parts = []
        loc = self
        while loc != os.curdir and loc != os.pardir:
            prev = loc
            loc, child = prev.splitpath()
            if loc == prev:
                break
            parts.append(child)
        parts.append(loc)
        parts.reverse()
        return parts


    #

    # Voici une bonne pratique, avoir une méthode complexe (ici relpathto(),
    # qui crée un chemin relatif du path() courant vers un autre dossier), et
    # son opposée plus simple (ici relpath(), qui crée un chemin relatif d'un
    # dossier vers le path courant) qui utilise la méthode précédente en en
    # inversant juste les paramètres.

    # En effet ça ne sert à rien d'écrire deux fois la même méthode, on
    # factorise ainsi du code et respecte le principe DRY (don't repeat
    # yourself).

    # relpathto() est un bon exemple d'un code assez complexe pour une
    # opération qui parait pourtant assez simple. C'est aussi un très bon
    # exemple de comment écrire des commentaires : on ne décrit pas les
    # opérations évidentes mais on explique les choses ambiguës et on met des
    # avertissements

    #

    def relpath(self, start='.'):
        """ Return this path as a relative path,
        based from start, which defaults to the current working directory.
        """
        cwd = self._next_class(start)
        return cwd.relpathto(self)

    def relpathto(self, dest):
        """ Return a relative path from self to dest.

        If there is no relative path from self to dest, for example if
        they reside on different drives in Windows, then this returns
        dest.abspath().
        """
        origin = self.abspath()
        dest = self._next_class(dest).abspath()

        orig_list = origin.normcase().splitall()
        # Don't normcase dest!  We want to preserve the case.
        dest_list = dest.splitall()

        if orig_list[0] != self.module.normcase(dest_list[0]):
            # Can't get here from there.
            return dest

        # Find the location where the two paths start to differ.
        i = 0
        for start_seg, dest_seg in zip(orig_list, dest_list):
            if start_seg != self.module.normcase(dest_seg):
                break
            i += 1

        # Now i is the point where the two paths diverge.
        # Need a certain number of "os.pardir"s to work up
        # from the origin to the point of divergence.
        segments = [os.pardir] * (len(orig_list) - i)
        # Need to add the diverging part of dest_list.
        segments += dest_list[i:]
        if len(segments) == 0:
            # If they happen to be identical, use os.curdir.
            relpath = os.curdir
        else:
            relpath = self.module.join(*segments)
        return self._next_class(relpath)

    # --- Listing, searching, walking, and matching

    #
    # un simple wrapper mais qui rajoute un argument en plus : un pattern à la
    # unix. C'est une extension naturelle, et c'est le genre de chose que vous
    # vouliez faire et vous vous êtes toujours demandé : "mais pourquoi
    # c'est pas par défaut ?" ou "comment on fait ça facilement ?" Si vous
    # vous posez ce genre de question, étendez un peu les comportements
    # initiaux. Rajouter un argument ne rend pas le comportement différent du
    # précédent grâce au paramètre par défaut mis à None, donc c'est tout
    # bénef.
    #

    def listdir(self, pattern=None):
        """ D.listdir() -> List of items in this directory.

        Use D.files() or D.dirs() instead if you want a listing
        of just files or just subdirectories.

        The elements of the list are path objects.

        With the optional 'pattern' argument, this only lists
        items whose names match the given pattern.
        """
        names = os.listdir(self)
        if pattern is not None:
            names = fnmatch.filter(names, pattern)
        return [self / child for child in names]

    #
    # Dans la même lignée de ce qu'on a vu plus haut: utiliser une fonction
    # plus complexe (qui déjà étend un comportement par défaut) pour en
    # faire encore une méthode plus spécialisée.

    # L'avantage de cette approche c'est que le code est plein de petites
    # briques:

    # vous avez listdir(), qui est assez court (mais déjà plus puissant),
    # puis dirs() et files(), qui font la même chose en plus spécialisés.

    # L'alternative aurait été d'ajouter une param à listdir() et ne pas
    # créer dirs() et files(), mais ça aurait rajouté un if dans le code et
    # un paramètre qui fait rechercher dans la doc celui qui l'utilise et
    # celui qui lit le code.

    # Avec l'approche actuelle, l'API est très claire :

    # for d in path('/etc').dirs()

    # On s'attend à lire tous les dossiers de /etc. Et les
    # méthodes restent courtes.

    #

    def dirs(self, pattern=None):
        """ D.dirs() -> List of this directory's subdirectories.

        The elements of the list are path objects.
        This does not walk recursively into subdirectories
        (but see path.walkdirs).

        With the optional 'pattern' argument, this only lists
        directories whose names match the given pattern.  For
        example, ``d.dirs('build-*')``.
        """
        return [p for p in self.listdir(pattern) if p.isdir()]

    def files(self, pattern=None):
        """ D.files() -> List of the files in this directory.

        The elements of the list are path objects.
        This does not walk into subdirectories (see path.walkfiles).

        With the optional 'pattern' argument, this only lists files
        whose names match the given pattern.  For example,
        ``d.files('*.pyc')``.
        """

        return [p for p in self.listdir(pattern) if p.isfile()]


    #

    # walk() et ses pendants walkdirs() et walkfiles() sont des alternatives
    # au très peu intuitif os.path.walk qui permet de traverser récursivement
    # un répertoire.

    # En effet, en Python les callbacks sont quelque chose qu'on utilise peu,
    # et à l'inverse, on itère beaucoup.

    # Cela permet de faire:

    # for f in path('/etc').walk_files():

    # Pour lister récursivement tous les fichiers de /etc et de ses sous
    # (et sous, sous, sous) dossiers.

    # C'est clair, c'est simple à comprendre et facile à utiliser.

    # L'auteur utilise ici 'yield', et c'est l'outil parfait pour cela.
    # Souvenez vous de 'yield' comme un très bon moyen de parcourir des choses
    # imbriquées comme si c'était une structure plate à une dimension.

    # Yield permet de transformer n'importe quelle méthode d'un objet en
    # un générateur sur un algorithme qui peut être très complexe, simplifiant
    # son utilisation. Pensez-y !

    # Sous le capot, c'est presque un appel récursif, si ce n'est qu'un nouvel
    # objet path() est créé à chaque fois, depuis lequel on fait walk().

    # Notez également que sur une méthode comme ça qui peut foirer facilement
    # (une opération sur des centaines de fichiers...), un paramètre permet
    # de choisir une gestion des erreurs parmi :

    # - lever une exception (qui est dans un code propre le choix par défaut)
    # - ignorer (pour faire un code tolérant aux erreurs)
    # - ou faire un retour sans erreur, mais avec un warning technique (utile
    #     pour le scripting)

    # Encore une fois, faire une classe, c'est l'occasion de penser à
    # l'utilisateur de la classe, ce qui a été ici bien fait.

    # Enfin, contrairement à ce qu'on pourrait attendre, walkdirs et walkfiles
    # n'utilisent pas walk(), ce qui est généralement fait pour des raisons de
    # performances (on sacrifie le DRY pour éviter un appel de callback
    # ou un test sur des grosses boucles), même si ici c'est une supposition.

    #

    def walk(self, pattern=None, errors='strict'):
        """ D.walk() -> iterator over files and subdirs, recursively.

        The iterator yields path objects naming each child item of
        this directory and its descendants.  This requires that
        D.isdir().

        This performs a depth-first traversal of the directory tree.
        Each directory is returned just before all its children.

        The errors= keyword argument controls behavior when an
        error occurs.  The default is 'strict', which causes an
        exception.  The other allowed values are 'warn', which
        reports the error via warnings.warn(), and 'ignore'.
        """
        if errors not in ('strict', 'warn', 'ignore'):
            raise ValueError("invalid errors parameter")

        try:
            childList = self.listdir()
        except Exception:
            if errors == 'ignore':
                return
            elif errors == 'warn':
                warnings.warn(
                    "Unable to list directory '%s': %s"
                    % (self, sys.exc_info()[1]),
                    TreeWalkWarning)
                return
            else:
                raise

        for child in childList:
            if pattern is None or child.fnmatch(pattern):
                yield child
            try:
                isdir = child.isdir()
            except Exception:
                if errors == 'ignore':
                    isdir = False
                elif errors == 'warn':
                    warnings.warn(
                        "Unable to access '%s': %s"
                        % (child, sys.exc_info()[1]),
                        TreeWalkWarning)
                    isdir = False
                else:
                    raise

            if isdir:
                for item in child.walk(pattern, errors):
                    yield item

    def walkdirs(self, pattern=None, errors='strict'):
        """ D.walkdirs() -> iterator over subdirs, recursively.

        With the optional 'pattern' argument, this yields only
        directories whose names match the given pattern.  For
        example, ``mydir.walkdirs('*test')`` yields only directories
        with names ending in 'test'.

        The errors= keyword argument controls behavior when an
        error occurs.  The default is 'strict', which causes an
        exception.  The other allowed values are 'warn', which
        reports the error via warnings.warn(), and 'ignore'.
        """
        if errors not in ('strict', 'warn', 'ignore'):
            raise ValueError("invalid errors parameter")

        try:
            dirs = self.dirs()
        except Exception:
            if errors == 'ignore':
                return
            elif errors == 'warn':
                warnings.warn(
                    "Unable to list directory '%s': %s"
                    % (self, sys.exc_info()[1]),
                    TreeWalkWarning)
                return
            else:
                raise

        for child in dirs:
            if pattern is None or child.fnmatch(pattern):
                yield child
            for subsubdir in child.walkdirs(pattern, errors):
                yield subsubdir

    def walkfiles(self, pattern=None, errors='strict'):
        """ D.walkfiles() -> iterator over files in D, recursively.

        The optional argument, pattern, limits the results to files
        with names that match the pattern.  For example,
        ``mydir.walkfiles('*.tmp')`` yields only files with the .tmp
        extension.
        """
        if errors not in ('strict', 'warn', 'ignore'):
            raise ValueError("invalid errors parameter")

        try:
            childList = self.listdir()
        except Exception:
            if errors == 'ignore':
                return
            elif errors == 'warn':
                warnings.warn(
                    "Unable to list directory '%s': %s"
                    % (self, sys.exc_info()[1]),
                    TreeWalkWarning)
                return
            else:
                raise

        for child in childList:
            try:
                isfile = child.isfile()
                isdir = not isfile and child.isdir()
            except:
                if errors == 'ignore':
                    continue
                elif errors == 'warn':
                    warnings.warn(
                        "Unable to access '%s': %s"
                        % (self, sys.exc_info()[1]),
                        TreeWalkWarning)
                    continue
                else:
                    raise

            if isfile:
                if pattern is None or child.fnmatch(pattern):
                    yield child
            elif isdir:
                for f in child.walkfiles(pattern, errors):
                    yield f

    def fnmatch(self, pattern):
        """ Return True if self.name matches the given pattern.

        pattern - A filename pattern with wildcards,
            for example ``'*.py'``.
        """
        return fnmatch.fnmatch(self.name, pattern)

    def glob(self, pattern):
        """ Return a list of path objects that match the pattern.

        pattern - a path relative to this directory, with wildcards.

        For example, path('/users').glob('*/bin/*') returns a list
        of all the files users have in their bin directories.
        """
        cls = self._next_class
        return [cls(s) for s in glob.glob(self / pattern)]

    #
    # --- Reading or writing an entire file at once.

    def open(self, mode='r'):
        """ Open this file.  Return a file object. """
        return open(self, mode)

    #

    # L'avantage d'avoir une classe comme point de départ de tout c'est que
    # c'est facile à manipuler dans le shell, surtout en autocompletion.

    # Donc il est bon de mettre quelques outils qui sont pratiques dans les
    # usages type shell.

    # Ici c'est exactement le cas : on fait des méthodes un peu bourrines (
    # globalement ça dump en mémoire ou ça écrit tout le fichier d'un coup),
    # mais très pratiques pour manipuler les objets dans un terminal.

    # Notez aussi le nettoyage opéré:

    #             return (t.replace(u'\r\n', u'\n')
    #                  .replace(u'\r\x85', u'\n')
    #                  .replace(u'\r', u'\n')
    #                  .replace(u'\x85', u'\n')
    #                  .replace(u'\u2028', u'\n'))

    # Ce n'est pas particulièrement lié à la POO, mais l'encapsulation de
    # ce genre de process est toujours le bienvenu. L'idée est que l'objet
    # puisse être utilisé comme une boîte noire en laquelle on a totalement
    # confiance.

    #


    def bytes(self):
        """ Open this file, read all bytes, return them as a string. """
        with self.open('rb') as f:
            return f.read()

    def write_bytes(self, bytes, append=False):
        """ Open this file and write the given bytes to it.

        Default behavior is to overwrite any existing file.
        Call p.write_bytes(bytes, append=True) to append instead.
        """
        if append:
            mode = 'ab'
        else:
            mode = 'wb'
        with self.open(mode) as f:
            f.write(bytes)

    def text(self, encoding=None, errors='strict'):
        r""" Open this file, read it in, return the content as a string.

        This method uses 'U' mode, so '\r\n' and '\r' are automatically
        translated to '\n'.

        Optional arguments:

        encoding - The Unicode encoding (or character set) of
            the file.  If present, the content of the file is
            decoded and returned as a unicode object; otherwise
            it is returned as an 8-bit str.
        errors - How to handle Unicode errors; see help(str.decode)
            for the options.  Default is 'strict'.
        """
        if encoding is None:
            # 8-bit
            with self.open('U') as f:
                return f.read()
        else:
            # Unicode
            with codecs.open(self, 'r', encoding, errors) as f:
                # (Note - Can't use 'U' mode here, since codecs.open
                # doesn't support 'U' mode.)
                t = f.read()
            return (t.replace(u'\r\n', u'\n')
                     .replace(u'\r\x85', u'\n')
                     .replace(u'\r', u'\n')
                     .replace(u'\x85', u'\n')
                     .replace(u'\u2028', u'\n'))

    #
    # Sur des méthodes avec de nombreux paramètres, ne pas hésiter
    # à mettre un maximum de valeurs par défaut "saines" (c'est à dire la
    # valeur du cas le plus courant ou pragmatique).

    # Comme c'est une grosse fonction très configurable, la docstring
    # est écrite en conséquence. Ne soyez pas timide avec la dosctring,
    # on peut la faire très très très longue, ce n'est pas une mauvaise
    # chose.

    # Notez que la docstring est préfixée d'un "r" ici, pour que Python
    # n'interprète pas les \n et \r.
    #

    def write_text(self, text, encoding=None, errors='strict', linesep=os.linesep, append=False):
        r""" Write the given text to this file.

        The default behavior is to overwrite any existing file;
        to append instead, use the 'append=True' keyword argument.

        There are two differences between path.write_text() and
        path.write_bytes(): newline handling and Unicode handling.
        See below.

        Parameters:

          - text - str/unicode - The text to be written.

          - encoding - str - The Unicode encoding that will be used.
            This is ignored if 'text' isn't a Unicode string.

          - errors - str - How to handle Unicode encoding errors.
            Default is 'strict'.  See help(unicode.encode) for the
            options.  This is ignored if 'text' isn't a Unicode
            string.

          - linesep - keyword argument - str/unicode - The sequence of
            characters to be used to mark end-of-line.  The default is
            os.linesep.  You can also specify None; this means to
            leave all newlines as they are in 'text'.

          - append - keyword argument - bool - Specifies what to do if
            the file already exists (True: append to the end of it;
            False: overwrite it.)  The default is False.


        --- Newline handling.

        write_text() converts all standard end-of-line sequences
        ('\n', '\r', and '\r\n') to your platform's default end-of-line
        sequence (see os.linesep; on Windows, for example, the
        end-of-line marker is '\r\n').

        If you don't like your platform's default, you can override it
        using the 'linesep=' keyword argument.  If you specifically want
        write_text() to preserve the newlines as-is, use 'linesep=None'.

        This applies to Unicode text the same as to 8-bit text, except
        there are three additional standard Unicode end-of-line sequences:
        u'\x85', u'\r\x85', and u'\u2028'.

        (This is slightly different from when you open a file for
        writing with fopen(filename, "w") in C or open(filename, 'w')
        in Python.)


        --- Unicode

        If 'text' isn't Unicode, then apart from newline handling, the
        bytes are written verbatim to the file.  The 'encoding' and
        'errors' arguments are not used and must be omitted.

        If 'text' is Unicode, it is first converted to bytes using the
        specified 'encoding' (or the default encoding if 'encoding'
        isn't specified).  The 'errors' argument applies only to this
        conversion.

        """
        if isinstance(text, unicode):
            if linesep is not None:
                # Convert all standard end-of-line sequences to
                # ordinary newline characters.
                text = (text.replace(u'\r\n', u'\n')
                            .replace(u'\r\x85', u'\n')
                            .replace(u'\r', u'\n')
                            .replace(u'\x85', u'\n')
                            .replace(u'\u2028', u'\n'))
                text = text.replace(u'\n', linesep)
            if encoding is None:
                encoding = sys.getdefaultencoding()
            bytes = text.encode(encoding, errors)
        else:
            # It is an error to specify an encoding if 'text' is
            # an 8-bit string.
            assert encoding is None

            if linesep is not None:
                text = (text.replace('\r\n', '\n')
                            .replace('\r', '\n'))
                bytes = text.replace('\n', linesep)

        self.write_bytes(bytes, append)

    def lines(self, encoding=None, errors='strict', retain=True):
        r""" Open this file, read all lines, return them in a list.

        Optional arguments:
            encoding - The Unicode encoding (or character set) of
                the file.  The default is None, meaning the content
                of the file is read as 8-bit characters and returned
                as a list of (non-Unicode) str objects.
            errors - How to handle Unicode errors; see help(str.decode)
                for the options.  Default is 'strict'
            retain - If true, retain newline characters; but all newline
                character combinations ('\r', '\n', '\r\n') are
                translated to '\n'.  If false, newline characters are
                stripped off.  Default is True.

        This uses 'U' mode.
        """
        if encoding is None and retain:
            with self.open('U') as f:
                return f.readlines()
        else:
            return self.text(encoding, errors).splitlines(retain)

    def write_lines(self, lines, encoding=None, errors='strict',
                    linesep=os.linesep, append=False):
        r""" Write the given lines of text to this file.

        By default this overwrites any existing file at this path.

        This puts a platform-specific newline sequence on every line.
        See 'linesep' below.

        lines - A list of strings.

        encoding - A Unicode encoding to use.  This applies only if
            'lines' contains any Unicode strings.

        errors - How to handle errors in Unicode encoding.  This
            also applies only to Unicode strings.

        linesep - The desired line-ending.  This line-ending is
            applied to every line.  If a line already has any
            standard line ending ('\r', '\n', '\r\n', u'\x85',
            u'\r\x85', u'\u2028'), that will be stripped off and
            this will be used instead.  The default is os.linesep,
            which is platform-dependent ('\r\n' on Windows, '\n' on
            Unix, etc.)  Specify None to write the lines as-is,
            like file.writelines().

        Use the keyword argument append=True to append lines to the
        file.  The default is to overwrite the file.  Warning:
        When you use this with Unicode data, if the encoding of the
        existing data in the file is different from the encoding
        you specify with the encoding= parameter, the result is
        mixed-encoding data, which can really confuse someone trying
        to read the file later.
        """
        if append:
            mode = 'ab'
        else:
            mode = 'wb'
        with self.open(mode) as f:
            for line in lines:
                isUnicode = isinstance(line, unicode)
                if linesep is not None:
                    # Strip off any existing line-end and add the
                    # specified linesep string.
                    if isUnicode:
                        if line[-2:] in (u'\r\n', u'\x0d\x85'):
                            line = line[:-2]
                        elif line[-1:] in (u'\r', u'\n',
                                           u'\x85', u'\u2028'):
                            line = line[:-1]
                    else:
                        if line[-2:] == '\r\n':
                            line = line[:-2]
                        elif line[-1:] in ('\r', '\n'):
                            line = line[:-1]
                    line += linesep
                if isUnicode:
                    if encoding is None:
                        encoding = sys.getdefaultencoding()
                    line = line.encode(encoding, errors)
                f.write(line)

    def read_md5(self):
        """ Calculate the md5 hash for this file.

        This reads through the entire file.
        """
        return self.read_hash('md5')

    def _hash(self, hash_name):
        with self.open('rb') as f:
            m = hashlib.new(hash_name)
            while True:
                d = f.read(8192)
                if not d:
                    break
                m.update(d)
            return m

    def read_hash(self, hash_name):
        """ Calculate given hash for this file.

        List of supported hashes can be obtained from hashlib package. This
        reads the entire file.
        """
        return self._hash(hash_name).digest()

    def read_hexhash(self, hash_name):
        """ Calculate given hash for this file, returning hexdigest.

        List of supported hashes can be obtained from hashlib package. This
        reads the entire file.
        """
        return self._hash(hash_name).hexdigest()



    #
    # Comme les fonctions, les méthodes peuvent être définies sur une ligne si
    # le bloc ne fait qu'une ligne de taille. On utilise ça quand la fonction
    # est juste un alias un peu avancé comme ici pour garder un style quasi
    # déclaratif.
    #

    # --- Methods for querying the filesystem.
    # N.B. On some platforms, the os.path functions may be implemented in C
    # (e.g. isdir on Windows, Python 3.2.2), and compiled functions don't get
    # bound. Playing it safe and wrapping them all in method calls.

    def isabs(self): return self.module.isabs(self)
    def exists(self): return self.module.exists(self)
    def isdir(self): return self.module.isdir(self)
    def isfile(self): return self.module.isfile(self)
    def islink(self): return self.module.islink(self)
    def ismount(self): return self.module.ismount(self)

    def samefile(self): return self.module.samefile(self)

    def getatime(self): return self.module.getatime(self)
    atime = property(
        getatime, None, None,
        """ Last access time of the file. """)

    def getmtime(self): return self.module.getmtime(self)
    mtime = property(
        getmtime, None, None,
        """ Last-modified time of the file. """)

    def getctime(self): return self.module.getctime(self)
    ctime = property(
        getctime, None, None,
        """ Creation time of the file. """)

    def getsize(self): return self.module.getsize(self)
    size = property(
        getsize, None, None,
        """ Size of the file, in bytes. """)

    #
    # Technique intéressante : on peut générer dynamiquement le corps de
    # la classe. En effet, il peut contenir des if, des try, des for, etc.
    # Ici par exemple, on ne définit la méthode access() que si le module
    # 'os' possède l'attribut 'access'.

    # Si ce n'est pas le cas, la classe n'aura pas cette méthode.
    #

    if hasattr(os, 'access'):
        def access(self, mode):
            """ Return true if current user has access to this path.

            mode - One of the constants os.F_OK, os.R_OK, os.W_OK, os.X_OK
            """
            return os.access(self, mode)

    def stat(self):
        """ Perform a stat() system call on this path. """
        return os.stat(self)

    def lstat(self):
        """ Like path.stat(), but do not follow symbolic links. """
        return os.lstat(self)


    #
    # Une autre technique intéressante : une des rares utilisation du double
    # '_' en tant que préfixe qui ait du sens. '__method' interdit d'accéder
    # directement à la méthode depuis l'extérieur. C'est ce qu'on a de plus
    # proche de "private" en Python.

    # Ce n'est pas sécurisé du tout (on peut le contourner) et cela empêche le
    # monkey patching et autres mesures de contournement en cas de besoin,
    # donc je ne vous recommande pas de le faire.

    # Mais dans ce cas, ces méthodes sont volontairement définies ainsi pour
    # être invisibles puis un peu plus bas, si win32security ou pwd existent
    # (rappelez-vous, ce sont des dépendances optionnelles), alors elles sont
    # aliasées pour être rendues disponibles.

    # Il y a 3 implémentations (3 méthodes: une pour windows, une pour unix et
    # une pour le cas où aucun module n'est présent) pour la même
    # fonctionnalité, et l'une des 3 méthodes est utilisée comme
    # implémentation de get_owner().

    # On aurait pu tout mettre dans des if directement, mais ça ferait des
    # gros blocs moins lisibles. Ici il est facile de comprendre le code
    # source.
    #

    def __get_owner_windows(self):
        r"""
        Return the name of the owner of this file or directory. Follow
        symbolic links.

        Return a name of the form ur'DOMAIN\User Name'; may be a group.
        """
        desc = win32security.GetFileSecurity(
            self, win32security.OWNER_SECURITY_INFORMATION)
        sid = desc.GetSecurityDescriptorOwner()
        account, domain, typecode = win32security.LookupAccountSid(None, sid)
        return domain + u'\\' + account

    def __get_owner_unix(self):
        """
        Return the name of the owner of this file or directory. Follow
        symbolic links.
        """
        st = self.stat()
        return pwd.getpwuid(st.st_uid).pw_name

    def __get_owner_not_implemented(self):
        raise NotImplementedError("Ownership not available on this platform.")

    if 'win32security' in globals():
        get_owner = __get_owner_windows
    elif 'pwd' in globals():
        get_owner = __get_owner_unix
    else:
        get_owner = __get_owner_not_implemented

    owner = property(
        get_owner, None, None,
        """ Name of the owner of this file or directory. """)

    if hasattr(os, 'statvfs'):
        def statvfs(self):
            """ Perform a statvfs() system call on this path. """
            return os.statvfs(self)

    if hasattr(os, 'pathconf'):
        def pathconf(self, name):
            return os.pathconf(self, name)


    #
    # Pas d'autres commentaires après celui-là. jusqu'à la classe de fin.

    # Les méthodes suivantes retournent 'self' bien que ce ne soit
    # pas nécessaire.
    # Par exemple path('/tmp/test').chmod(777) va retourner path('/tmp/test')
    # alors que tout ce qu'on lui demande, c'est de changer la permission
    # du dossier. On le fait pour permettre le chaîning, c'est à dire
    # d'autoriser les appels enchainés comme :
    # path('/tmp/test').chmod(777).rename('/tmp/essai').mkdir('ping')
    #

    #
    # --- Modifying operations on files and directories

    def utime(self, times):
        """ Set the access and modified times of this file. """
        os.utime(self, times)
        return self

    def chmod(self, mode):
        os.chmod(self, mode)
        return self

    if hasattr(os, 'chown'):
        def chown(self, uid, gid):
            os.chown(self, uid, gid)
            return self

    def rename(self, new):
        os.rename(self, new)
        return self._next_class(new)

    def renames(self, new):
        os.renames(self, new)
        return self._next_class(new)

    #
    # --- Create/delete operations on directories

    def mkdir(self, mode=0777):
        os.mkdir(self, mode)
        return self

    def mkdir_p(self, mode=0777):
        try:
            self.mkdir(mode)
        except OSError, e:
            if e.errno != errno.EEXIST:
                raise
        return self

    def makedirs(self, mode=0777):
        os.makedirs(self, mode)
        return self

    def makedirs_p(self, mode=0777):
        try:
            self.makedirs(mode)
        except OSError, e:
            if e.errno != errno.EEXIST:
                raise
        return self

    def rmdir(self):
        os.rmdir(self)
        return self

    def rmdir_p(self):
        try:
            self.rmdir()
        except OSError, e:
            if e.errno != errno.ENOTEMPTY and e.errno != errno.EEXIST:
                raise
        return self

    def removedirs(self):
        os.removedirs(self)
        return self

    def removedirs_p(self):
        try:
            self.removedirs()
        except OSError, e:
            if e.errno != errno.ENOTEMPTY and e.errno != errno.EEXIST:
                raise
        return self

    # --- Modifying operations on files

    def touch(self):
        """ Set the access/modified times of this file to the current time.
        Create the file if it does not exist.
        """
        fd = os.open(self, os.O_WRONLY | os.O_CREAT, 0666)
        os.close(fd)
        os.utime(self, None)
        return self

    def remove(self):
        os.remove(self)
        return self

    def remove_p(self):
        try:
            self.unlink()
        except OSError, e:
            if e.errno != errno.ENOENT:
                raise
        return self

    def unlink(self):
        os.unlink(self)
        return self

    def unlink_p(self):
        self.remove_p()
        return self

    # --- Links

    if hasattr(os, 'link'):
        def link(self, newpath):
            """ Create a hard link at 'newpath', pointing to this file. """
            os.link(self, newpath)
            return self._next_class(newpath)

    if hasattr(os, 'symlink'):
        def symlink(self, newlink):
            """ Create a symbolic link at 'newlink', pointing here. """
            os.symlink(self, newlink)
            return self._next_class(newlink)

    if hasattr(os, 'readlink'):
        def readlink(self):
            """ Return the path to which this symbolic link points.

            The result may be an absolute or a relative path.
            """
            return self._next_class(os.readlink(self))

        def readlinkabs(self):
            """ Return the path to which this symbolic link points.

            The result is always an absolute path.
            """
            p = self.readlink()
            if p.isabs():
                return p
            else:
                return (self.parent / p).abspath()

    #
    # --- High-level functions from shutil

    copyfile = shutil.copyfile
    copymode = shutil.copymode
    copystat = shutil.copystat
    copy = shutil.copy
    copy2 = shutil.copy2
    copytree = shutil.copytree
    if hasattr(shutil, 'move'):
        move = shutil.move
    rmtree = shutil.rmtree

    def rmtree_p(self):
        try:
            self.rmtree()
        except OSError, e:
            if e.errno != errno.ENOENT:
                raise
        return self

    #
    # --- Special stuff from os

    if hasattr(os, 'chroot'):
        def chroot(self):
            os.chroot(self)

    if hasattr(os, 'startfile'):
        def startfile(self):
            os.startfile(self)
            return self


#
# La seule spécificité de cette classe est d'overrider la méthode __new__ qui
# est le véritable constructeur en Python (__init__ n'est pas un constructeur)
# L'auteur le fait car tempdir hérite de path qui hérite d'unicode. Or, tous
# les types non-mutables (int, tuple, str, etc, et donc unicode), n'étant pas
# modifiables, ne peuvent être changés dans __init__. Ici __new__ est
# utilisé pour retourner un path tout en créant un dossier temporaire, ce
# qui ne marcherait pas dans __init__. Il est très rare d'avoir besoin de
# s'occuper de __new__.
#

class tempdir(path):
    """
    A temporary directory via tempfile.mkdtemp, and constructed with the
    same parameters that you can use as a context manager.

    Example:

        with tempdir() as d:
            # do stuff with the path object "d"

        # here the directory is deleted automatically
    """

    @ClassProperty
    @classmethod
    def _next_class(cls):
        return path

    def __new__(cls, *args, **kwargs):
        dirname = tempfile.mkdtemp(*args, **kwargs)
        return super(tempdir, cls).__new__(cls, dirname)

    def __init__(self, *args, **kwargs):
        pass

    def __enter__(self):
        return self

    def __exit__(self, exc_type, exc_value, traceback):
        if not exc_value:
            self.rmtree()


C’est une bibliothèque très complète et propre, et bien qu’il y ait quelques astuces ici et là, vous avez pu constater que l’usage de la POO reste tout à fait accessible : héritage simple, déclaration de méthode, properties, etc. On ne fait pas beaucoup de folies.

Il n’y a pas besoin de faire les choses compliquées avec la POO, on peut faire des choses tout à fait ordinaires et utiles.

Pour le dernier tuto de la série, on tapera dans la magie noire, à savoir les métaclasses. Tintintin.

P.S: cet article a été sponsorisé par le plugin Sublime Text Wraps Plus. Avec Wraps Plus, plus de caractères en sus !

]]>
http://sametmax.com/le-guide-ultime-et-definitif-sur-la-programmation-orientee-objet-en-python-a-lusage-des-debutants-qui-sont-rassures-par-les-textes-detailles-qui-prennent-le-temps-de-tout-expliquer-partie-7/feed/ 24 5912
Le guide ultime et définitif sur la programmation orientée objet en Python à l’usage des débutants qui sont rassurés par les textes détaillés qui prennent le temps de tout expliquer. Partie 3. http://sametmax.com/le-guide-ultime-et-definitif-sur-la-programmation-orientee-objet-en-python-a-lusage-des-debutants-qui-sont-rassures-par-les-textes-detailles-qui-prennent-le-temps-de-tout-expliquer-partie-3/ http://sametmax.com/le-guide-ultime-et-definitif-sur-la-programmation-orientee-objet-en-python-a-lusage-des-debutants-qui-sont-rassures-par-les-textes-detailles-qui-prennent-le-temps-de-tout-expliquer-partie-3/#comments Sun, 27 Jan 2013 06:59:49 +0000 http://sametmax.com/?p=4292 Prérequis :

Nous avons vu les attributs de classe et les propriétés, mais de manière très rudimentaire. Il y a beaucoup de choses à savoir sur la question.

Attribut de classe, la totale

Nous avons vu qu’un attribut de classe était accessible par la classe, sans instance :

>>> class TrueLies:
...
...         attribut_de_classe = 'valeur'
...
>>> print TrueLies.attribut_de_classe
valeur

Mais également par une instance :

>>> print TrueLies().attribut_de_classe
valeur

C’est simple et direct. Il n’y a pas de public static virtuel neoconceptuel à mettre devant comme dans certains langages trop cafféinés.

Ce qu’on a pas vu par contre, c’est ce qui arrive si on modifie la valeur de ces attributs.

Pour faire simple :

  • Si je modifie l’attribut au niveau de l’instance, seule l’instance voit les modifications.
  • Si je modifie l’attribut au niveau de la classe, la classe et toutes les instances crées après ont la nouvelle valeur.
>>> instance = TrueLies()
>>> instance.attribut_de_classe = 'nouvelle valeur'
>>> print instance.attribut_de_classe
nouvelle valeur
>>> print TrueLies.attribut_de_classe # ça ne change rien pour la classe
valeur
>>> TrueLies.attribut_de_classe = 'encore une nouvelle valeur'
>>> print TrueLies.attribut_de_classe
encore une nouvelle valeur
>>> print instance.attribut_de_classe # ça ne change rien pour cette instance
nouvelle valeur
>>> print TrueLies().attribut_de_classe # mais pour une nouvelle oui
encore une nouvelle valeur

Comme self est l’instance en cours, vous pouvez remplacer instance par self dans l’exemple ci-dessus (dans une méthode bien sûr, pas dans le shell), ça marche pareil.

Vu comme ça, ça à l’air d’être super pour donner une valeur par défaut à des attributs.

C’est une mauvaise idée.

En effet, les attributs de classes sont initialisés une seule fois, à la première lecture du code par Python. Pour les objets immutables comme les strings ou les int, on s’en branle. Mais pour les objets mutables comme les dicos ou les listes, c’est la merde.

>>> class TrueLies:
...
...         attribut_de_classe = [] # mettons une liste ici
...
...
>>> flim_pas_sur_le_cyclimse = TrueLies()
>>> etranger_qui_vole_le_travail_des_francais = TrueLies()

On a donc deux instances de TrueLies. A priori, on a aussi deux valeurs de attribut_de_classe, une pour chaque instance ?

Des faux seins sur un FAUX de norman fait des vidéos

Norman va bientôt faire un film avec les robins des bois au fait

>>> id(etranger_qui_vole_le_travail_des_francais.attribut_de_classe)
28992072
>>> id(flim_pas_sur_le_cyclimse.attribut_de_classe)
28992072

Comme vous pouvez le voir c’est le même id. attribut_de_classe est la même chose, car Python initialise attribut_de_classe une seule fois pour toute la session. Les deux instances ont donc un attribut qui contient une référence (puisque TOUT est référence en Python) qui pointe sur la même liste.

Dans les fait, ça veut dire que si on modifie l’un, ben forcément la modification est visible de l’autre côté aussi :

>>> etranger_qui_vole_le_travail_des_francais.attribut_de_classe.append(1)
>>> flim_pas_sur_le_cyclimse.attribut_de_classe
[1]

C’est rarement ce qu’on veut.

Donc ne donnez pas de valeur par défaut dans les attributs de classe. Faites ça avec __init__:

>>> class TrueLies:
...
...         def __init__(self):
...
...                 self.attribut_tres_classe = []

>>> flim_pas_sur_le_cyclimse = TrueLies()
>>> etranger_qui_vole_le_travail_des_francais = TrueLies()
>>> flim_pas_sur_le_cyclimse.attribut_tres_classe.append(1)
>>> flim_pas_sur_le_cyclimse.attribut_tres_classe
[1]
>>> etranger_qui_vole_le_travail_des_francais.attribut_tres_classe
[]

Le comportement attendu est le bon ici.

Ok, mais alors ils servent à quoi ces attributs à deux cents, là, cousin ?

– Et ben wesh, tu vois, ils servent à stocker les constantes et le cache.

– Ouais quand j’ai constamment du stock j’ai du cash, man.

– héééééééééééé… xactement.

Donc, d’abord, on met les pseudo constantes en attributs de classe. Je dis pseudo car il n’existe pas de constantes en Python. On parle de constante quand une variable est écrite toute en majuscule, une convention pour dire “le programme ne change jamais la valeur de cette variable (et t’as pas intérêt à la changer, pigé ?)”.

class TrueLies:

    NOMBRE_DE_BALLES_DANS_LE_CHARGEUR = 10000

On peut être certain que Schwarzy ne recharge jamais (y a que Thierry Lhermitte qui ferait un truc aussi ringard). Donc le nombre de balles dans le chargeur ne varie pas. On le met comme attribut de classe. C’est essentiellement à titre informatif. Pour nous ça change rien, mais pour quelqu’un qui va utiliser le code, il sait qu’il peut chercher toutes les constantes liées à TrueLies en faisant TrueLies.LES_TRUCS_EN_MAJUSCULES.

C’est l’usage le plus courant.

On peut aussi utiliser les attributs de classes pour créer une API déclarative, comme le fait l’ORM de Django. Mais bon, c’est mega advanced, donc je mets de côté le how to. Le jour où vous coderez un truc comme ça, vous lirez pas un article pour débutant.

Enfin on peut utiliser les attributs de classe pour partager des données entre les instances. Par exemple du cache.

class TrueFalseSomeWhatLiesMaybeWhoKnows :

    _cache = {}


    def calculer_le_nombre_de_balles_a_la_seconde(scene):

        # si y a rien dans le cache, on fait le calcul et on le met dans le cache
        if scene not in self._cache :

            self._cache[scene] = # mettre un calcul bien compliqué ici

        # on retourne le contenu du cache
        return self._cache[scene]

>>> TrueFalseSomeWhatLiesMaybeWhoKnows().calculer_le_nombre_de_balles_a_la_seconde(1)
56586586
>>> TrueFalseSomeWhatLiesMaybeWhoKnows().calculer_le_nombre_de_balles_a_la_seconde(1)
56586586

Le premier appel va faire le calcul. Mais pas le second, car le résultat a été stocké dans le dictionnaire qui est au niveau de la classe (et donc chaque nouvelle instance a une référence vers ce dictionnaire) et peut donc être réutilisé.

Vous noterez qu’on a appelé la variable _cache et pas cache. C’est encore une convention. Ça signifie, “cette variable est utilisée en interne, t’as pas à savoir ce qu’elle fait, imagine que c’est privé. Circulez, y a rien à voir.” Les outils de complétion de code masquent ces variables par défaut.

Pour la culture, sachez que nommer ses variables __nom les rend “privées” en Python. Néanmoins cette fonctionnalité est facilement contournable, et très peu appréciée dans la communauté, donc évitez-la.

Et puis il y a les méthodes statiques aussi

On a vu les méthodes de classe, qui sont, comme les attributs de classe, des méthodes qui n’ont pas besoin d’instance pour être appelées :

class ArmeeDesDouzeSinges:
    """
        Ouais c'est un remake d'un film français aussi.
        Ça vous la coupe hein ?
    """

    SINGES = 12

    @classmethod
    def nombre_de_singes_au_carre(cls):

        return cls.SINGES * cls.SINGES


>>> ArmeeDesDouzeSinges.nombre_de_singes_au_carre()
144

Le premier paramètre n’est pas l’objet en cours mais la classe en cours, et c’est tout ce dont nous avons besoin ici pour accéder à SINGES puisque c’est un attribut de classe.

Cet exemple est issu d’un de mes codes réels de productions, vous pouvez en constater l’intérêt évident dans la vie de tous les jours.

Nan je déconne, moi j’utilise plutôt des dromadaires au quotidien.

Bon, mais sachez plus sérieusement qu’il y a en prime des méthodes de classe, des méthodes statiques. C’est la même chose, mais aucun paramètre n’est passé automatiquement.

class LHommeALaChaussureRouge:
    """
        Oui c'est exactement ce que vous pensez. C'est affligeant.
    """

    @staticmethod
    def crie_son_desespoir(): # pas de cls

        print "Nooooooooooooooooooooooooooooooooon"


>>> LHommeALaChaussureRouge.crie_son_desespoir()
Nooooooooooooooooooooooooooooooooon

Alors là on arrive dans la feature anecdotique hein, du genre qu’on sort qu’au repas de Noël. Je la mets au menu juste pour que vous sachiez que ça existe, mais franchement je ne m’en sers presque jamais.

L’usage est le même qu’une méthode de classe, mais pour les trucs qui n’ont pas besoin d’avoir accès à la classe en cours.

Bon.

Bref, c’est juste une fonction préfixée. Avantage : elle est un poil plus rapide que la méthode de classe, et elle est mieux rangée qu’une simple fonction. Mais c’est vraiment tout.

Retour sur les properties

Si vous avez bonne mémoire, vous vous souviendrez qu’une propriété est juste un déguisement qu’on met sur une méthode pour qu’elle ressemble à un attribut :

class LesVisiteursEnAmerique:
    """
        Mais si, mais si...
    """

    @property
    def replique(self):

        return 'okay'


>>> film_pourri = LesVisiteursEnAmerique()
>>> film_pourri.replique
'okay'

Mais on peut aller plus loin que la lecture. On peut aussi décorer l’écriture et la suppression !

class LesVisiteursEnAmerique(object): # on rajoute (object) truc ici


    def __init__(self):
        self._replique = 'okay' # c'est privé, pas touche, y a un underscore


    @property
    def replique(self):
        print 'get'
        return self._replique


    @replique.setter # le décorateur a le même nom que la méthode
    def replique(self, value): # value est la valeur à droite du '=' quand on set
        print 'set to {}'.format(value)
        self._replique = value


    @replique.deleter
    def replique(self):
        print 'delete'
        self._replique = None


>>> film_pourri = LesVisiteursEnAmerique()
>>> film_pourri.replique
get
'okay'
>>> film_pourri.replique = 'zarma'
set to zarma
>>> film_pourri.replique
get
'zarma'
>>> film_pourri._replique
'zarma'
>>> del film_pourri.replique
delete
>>> film_pourri.replique
get

Et là vous allez me dire :

– c’est quoi ce (object) là haut là qui est apparu magiquement ?
– et à quoi ça sert ? Nom d’un remake hollywodien !

À la première question je dirai, réponse dans la prochaine partie. Sachez juste que s’il y a pas ce (object), le setter et le deleter ne marchent pas.

Pour la seconde, imaginez un truc un peu plus choupi, comme une réplique garantie d’être toujours en majuscule :

class LesVisiteursEnAmerique(object):


    def __init__(self):
        self._replique = 'OKAY'


    @property
    def replique(self):
        return self._replique


    @replique.setter
    def replique(self, value):
        self._replique = value.upper() # PAF ! on majusculise

>>> film_TRES_pourri = LesVisiteursEnAmerique()
>>> film_TRES_pourri.replique
'OKAY'
>>> film_TRES_pourri.replique = "D'ac"
>>> film_TRES_pourri.replique
"D'AC"

Et voilà le travail.

On peut donc “intercepter” la récupération, la suppression et la modification d’un attribut facilement. Cela permet d’exposer une belle API à base d’attribut, mais derrière faire des traitements complexes.

Il suffit de transformer un attribut normal en méthode, et de lui coller @property au cul.

C’est pour cette raison qu’on n’a jamais de getter et de setter en Python : on utilise les attributs tels quel, et si le besoin se présente, on en fait des propriétés.

Next stop, héritage, overriding, polymorphisme et autres gros mots que vous pourrez ressortir aux soirées mousses dans les hackerspaces.

]]>
http://sametmax.com/le-guide-ultime-et-definitif-sur-la-programmation-orientee-objet-en-python-a-lusage-des-debutants-qui-sont-rassures-par-les-textes-detailles-qui-prennent-le-temps-de-tout-expliquer-partie-3/feed/ 24 4292